by Yang Zhang^a)^b), Chang-Heng Tan^{*b}), Jun-Jie Tan^b), Pei-Ming Yang^{*a}), Shan-Hao Jiang^b), Xiang Ni^a), and Da-Yuan Zhu^b)

^a) Department of Chinese Traditional Medicine, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W.), Shanghai 200040, P. R. China (phone and fax: +86-21-62790148; e-mail: yangpeiming@yahoo.cn)

^b) Department of Natural Medicinal Chemistry, Shanghai Institute of Materia Medica, CAS, 555 ZuChongZhi Road, Shanghai 201203, P. R. China (phone and fax: +86-21-50806728; e-mail: chtan@mail.shcnc.ac.cn)

Three new, 1-3, and seven known phenolic and terpenic glycosides were isolated from the BuOHsoluble fraction of 95% EtOH extract of the roots and rhizomes of *Celastrus orbiculatus*. The structures of the new compounds were elucidated as carvacrol 2-*O*-*a*-L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (1), 5-methoxycarvacrol 2-*O*-*a*-L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (2), and 15hydroxytorreyol 10-*O*- β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (3) on the basis of spectroscopic analysis and chemical methods.

Introduction. - Celastrus orbiculatus THUNB. (Celastraceae) is a traditional medicinal plant which has been widely used for the treatment of rheumatic arthritis, systemic lupus erythematosus, and tumors in China [1]. Previous studies of this plant led to the isolation of sesquiterpenoids, mostly of β -dihydroagarofuran type [1–4], diterpenoids [4], triterpenoids [4], flavonoids [5], and alkaloids [6]. Our investigation on the H_2O -soluble components of the title plant resulted in the isolation of ten glycosides, including two new monoterpenoid diglycosides, *i.e.*, carvacrol 2-O- α -Lrhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (1) and 5-methoxycarvacrol 2-O- α -Lrhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (2), and one new sesquiterpenoid diglycoside, *i.e.*, 15-hydroxytorreyol 10-O- β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (3), along with seven known phenolic and terpenic glycosides, *i.e.*, 2,4,6trimethoxyphenol 1-O- β -D-glucopyranoside [7], glucosyringic acid [8], 1-(α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyloxy)-3,4,5-trimethoxybenzene [9], 3,4-dimethoxyphenyl-6-O-(α -L-rhamnopyranosyl)- β -D-glucopyranoside [10], (1S,2S,4R)-2-hydroxy-1,8-cineole- α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside [11], (1S,2S,4R)-2-hydroxy-1,8-cineole β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside [12], and pumilaside A [13]. The latter six known compounds were obtained from the genus Celastrus for the first time. Here, we report the isolation and structure elucidation of the three new compounds, 1-3.

Results and Discussion. – The dried and powdered roots and rhizomes of *C. orbiculatus* were extracted with 95% EtOH. The concentrated extract was suspended in H_2O and partitioned successively with petroleum ether, AcOEt, and BuOH. After

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

purification by repeated chromatography, the BuOH-soluble fraction afforded three new diglycosides, 1-3, and seven known glycosides.

Compounds **1** and **2** were obtained as white amorphous powders. The molecular formula $C_{22}H_{34}O_{10}$ for **1** and $C_{23}H_{36}O_{11}$ for **2** were established from the *quasi*-molecularion peaks $[M + Na]^+$ at m/z 481.2048 and 511.2157, respectively, in the HR-ESI-MS. Acid hydrolysis and GC analysis of both **1** and **2** gave L-rhamnose and D-glucose as sugar moiety. The analysis of 1D- and 2D-NMR allowed us to elucidate the structures of **1** and **2** to be carvacrol 2-*O*- α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside and 5-methoxycarvacrol 2-*O*- α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside, respectively.

The ¹H- and ¹³C-NMR spectra of **1** showed signals for a β -glucopyranosyl (δ (H) 4.80 (d, J = 7.3, 1 H); δ (C) 103.5 (d), 78.4 (d), 77.0 (d), 75.3 (d), 71.7 (d), and 68.1 (t)), an α -rhamnopyranosyl (δ (H) 4.69 (d, J = 1.5, 1 H); 102.3 (d), 74.4 (d), 72.6 (d), 72.3 (d), 70.0 (d), and 18.2 (q)), and a C₁₀ aromatic aglycone which contained a 1,2,4-trisubstituted aromatic ring (δ (H) 7.03 (d, J = 7.7, 1 H), 6.97 (d, J = 1.2, 1 H), and 6.80 (dd, J = 7.7, 1.2, 1 H)), an ⁱPr group (δ (H) 2.84 (*sept.*, J = 6.9, 1 H) and 1.23 (d, J = 6.9, 6 H)), and a Me group attached to the aromatic ring (δ (H) 2.23 (s, 3 H)). The above evidences suggested a phenolic monoterpenoid diglycoside.

HMBC Experiments of **1** (*Fig. 1*) exhibited clear cross-peaks H-C(7)/C(1), C(2), and C(6), as well as H-C(8)/C(3), C(4), and C(5), demonstrating that the ⁱPr and the Me groups were in *para*-position of the aromatic ring, and an O-atom connected with the disaccharides was in the *ortho*-position to the Me group, *i.e*, carvacrol as the aglycone of **1** [14]. Furthermore, HMBCs H-C(1')/C(2) and H-C(1'')/C(6') revealed α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyl as the sugar sequence connected with the O-atom at C(2). Therefore, the structure of **1** was elucidated to be carvacrol 2-O- α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside.

Fig. 1. Significant HMBCs of 1 and 2

The ¹H- and ¹³C-NMR spectra of **2** were very similar to those of **1**, except for a 1,2,4,5-tetrasubstituted benzene ring (δ (H) 6.99 and 6.69 (2*s*)) instead of the 1,2,4-trisubstituted one of **1**, and one additional MeO group (δ (H) 3.77 (*s*, 3 H); δ (C) 56.6 (*q*)), which suggested **2** to be a methoxylated derivative of **1**. The MeO group was located at C(5) by the HMBCs (*Fig. 1*) between C(5) and MeO, H–C(8), and H–C(6). Thus, **2** was proved to be 5-methoxycarvacrol 2-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside.

Compound **3** had the molecular formula $C_{26}H_{44}O_{11}$ based on the HR-ESI-MS data $(m/z 555.2790 \ ([M+Na]^+; \text{ calc. } 555.2781))$. The 1D- and 2D-NMR studies and chemical methods revealed **3** to be 15-hydroxytorreyol 10-O- β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside.

Two anomeric H-atom signals (δ (H) 4.98 (d, J=2.2), 4.49 (d, J=7.8)) in the ¹H-NMR spectrum (*Table*) together with acidic hydrolysis and GC analysis indicated a β -D-apiofuranosyl and a β -D-glucopyranosyl unit as the sugar residues. The ¹³C-NMR spectrum showed signals for 15 C-atoms (3 Me, 5 CH₂, and 5 CH groups, one quaternary sp²-C- and one O-bearing quaternary C-atom) for the aglycone, indicative of a dicyclic sesquiterpenoid. The ¹H-NMR spectrum of **3** revealed the presence of a tertiary Me group (δ (H) 1.35), two secondary Me groups (δ (H) 0.85 (d, J = 7.0), 0.90 (d, J=7.0), one olefinic H-atom (δ (H) 5.82 (d, J=5.3)), and one HO-CH₂ group $(\delta(H) 3.91 (s, 2 H))$. The above NMR data were similar to those of 15-hydroxy-Tmuurolol, a sesquiterpenoid isolated from the marine Streptomyces sp. M491 [15]. On comparing the ¹³C-NMR data of 3 with those of 15-hydroxy-T-muurolol, the most important differences were the downfield shift of C(10), C(8), and C(6), and upfield shift of C(14) ($\Delta \delta = +8.5$, +3.2, +3.7, and -4.5, resp., going from 15-hydroxy-Tmuurolol to 3, data obtained in CDCl₃ (for 15-hydroxy-T-muurolol) or CD₃OD (for 3), which suggested the aglycone unit of 3 to be a stereoisomer of 15-hydroxy-Tmuurolol at C(10), *i.e.*, a torrevol-type sesquiterpenoid [16]. The ¹H,¹H-COSY and HMBC correlations (*Fig. 2*) established that the aglycone of $\mathbf{3}$ had the same planar structure as 15-hydroxy-T-muurolol. Furthermore, the glycone moiety was elucidated to be α -L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyl linked with the O-atom at C(10) by HMBC correlations (Fig. 2) H-C(1')/C(10) and H-C(1'')/C(6').

Fig. 2. Selected 2D-NMR correlations of 3

Table. ¹H- and ¹³C-NMR Data of 3 (in CD₃OD)

	$\delta(\mathrm{H})$	$\delta(C)$
H-C(1)	1.70 - 1.79 (m)	46.2 (<i>d</i>)
$CH_2(2)$	$1.50 - 1.55 (m, H_a), 2.29 (dd, J = 11.6, 5.2, H_{\beta})$	19.2(t)
$CH_2(3)$	2.08 $(d, J = 5.2, H_a), 1.97 - 2.01 (m, H_{\beta})$	28.1(t)
C(4)	-	139.5 (s)
H-C(5)	5.82 (d, J = 5.3)	126.9(d)
H-C(6)	2.13 (dd, J = 12.1, 5.3)	37.9 (<i>d</i>)
H-C(7)	$1.34 - 1.44 \ (m)$	45.7 (<i>d</i>)
$CH_{2}(8)$	$1.48 - 1.56 (m, H_{\alpha}), 1.15 (qd, J = 13.5, 3.8, H_{\beta})$	22.5(t)
CH ₂ (9)	1.78 (td, $J = 13.5, 3.8, H_{\alpha}$), 1.58–1.64 (m, H_{β})	34.1 (<i>t</i>)
C(10)	-	80.8(s)
H-C(11)	$1.97 - 2.01 \ (m)$	28.0(d)
Me(12)	0.85 (d, J = 7.0)	15.9(q)
Me(13)	0.90 (d, J = 7.0)	22.3(q)
Me(14)	1.35(s)	24.8(q)
$CH_2(15)$	3.91 (s)	67.7 (<i>t</i>)
H - C(1')	4.49 (d, J = 7.8)	98.4(d)
H-C(2')	3.16 (dd, J = 9.2, 7.8)	75.7(d)
H-C(3')	3.28 - 3.37 (m)	78.6(d)
H-C(4')	3.21 - 3.26 (m)	72.3 (<i>d</i>)
H-C(5')	3.32 - 3.35(m)	76.7(d)
CH ₂ (6')	3.91 - 3.96(m), 3.53 - 3.55(m)	69.0(d)
H - C(1'')	4.98 (d, J = 2.2)	111.2 (<i>d</i>)
H-C(2")	3.86 (d, J = 2.2)	78.3(d)
C(3'')	-	80.8(s)
CH ₂ (4")	3.95 (d, J = 9.6), 3.75 (d, J = 9.6)	75.3 <i>(t)</i>
CH ₂ (5")	3.57 <i>(s)</i>	66.0 <i>(t)</i>

The relative configuration of **3** was established by NOESY experiments. As shown in *Fig.* 2, NOE cross-peaks Me–C(10)/H–C(1), H–C(6), and H–C(8), H_a–C(2)/ H_a–C(9) and H–C(7) were observed, indicating a chair-form *B*-ring with β -oriented and axial Me–C(10), H–C(6), and H–C(8), and an envelope-form *A*-ring with the CH₂(2) as the down-folded terminal.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh; Qingdao Haiyang, Co., Ltd., P. R. China), Sephadex LH-20 (Pharmacia Biotech AB, S-Uppsala), MCI gel CHP-20P and ODS-A gel (Mitsubishi Chemical Industries Co., Ltd., Japan). TLC: silica gel HSGF₂₅₄ (Yantai Jiangyou Guijiao Kaifa Co., Ltd., P. R. China). Semiprep. HPLC: Waters HPLC system, Waters-515-HPLC pump, Waters-2487 detector, column: Kromasil 100-5-C18, 5 μ , i.d. 10 × 250 mm. Optical rotation: Perkin-Elmer 341 polarimeter. UV Spectra: Shimadzu UV-2550 spectrophotometer. IR Spectra: Nicolet-Magna-750-FTIR spectrometer; KBr pellets; in cm⁻¹. NMR Spectra: Bruker AV-400 instrument at 400 (¹H) and 100 MHz (¹³C); in CD₃OD soln.; δ in ppm rel. to Me₄Si; J in Hz. ESI-MS and HR-ESI-MS: Bruker Esquire 3000 plus and Finnigan LC QDECA mass spectrometers, resp.; in m/z (rel. int.).

Plant Material. The roots and rhizomes of *C. orbiculatus* were collected in Hengyang County, Hunan Province, P. R. China, in July 2008. The plant was identified by Prof. *Tong Wu* of Shanghai Institute of Pharmaceutical Industry. A voucher specimen (No 08-55) was deposited with the Herbarium of Shanghai Institute of Materia Medica.

Extraction and Isolation. The dried roots and rhizomes of C. orbiculatus (6 kg) were extracted three times with 201 of 95% EtOH at 60° . The concentrated extract was suspended in H₂O (total 2.51) and partitioned with petroleum ether (PE), CHCl₃, AcOEt, and BuOH, resp., each 3×2.5 l. The BuOH fraction (47 g) was subjected to CC (SiO₂, 2 kg, i.d. 10×80 cm; CHCl₃, CHCl₃/MeOH 20:1, 10:1, 6:1, 3:1 (v/v), finally MeOH): Frs. 1-6. Fr. 3 (5.5 g) gave glucosyringic acid (8 mg) and 2,4,6-trimethoxyphenol 1-O- β -D-glucopyranoside (8 mg) after purification by two CC (1. SiO₂; CHCl₃/MeOH 10:1; 2. ODS-A gel; MeOH/H₂O 15%). Fr. 4 (16 g) was successively separated by two CC (1. MCI gel CHP-20P; H₂O, then 30, 50, 70, 95% (v/v) MeOH; 2. ODS-A gel; MeOH/H₂O 20%): Frs. 4.2.1-4.2.6. Fr. 4.2.2 (1.28 g) was purified by three CC (1. Sephadex LH-20; MeOH; 2. SiO₂; CHCl₃/MeOH/H₂O: 8:1:0.1; 3. ODS-A gel; MeOH/H₂O 12–30%) to yield 1-(α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyloxy)-3,4,5-trimethoxybenzene (40 mg), and 3,4-dimethoxyphenyl-6-O-(α -L-rhamnopyranosyl)- β -D-glucopyranoside (6 mg). Fr. 4.2.3 (189 mg) afforded (1S,2S,4R)-2-hydroxy-1,8-cineole a-L-rhamnopyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (9 mg) and (1S,2S,4R)-2-hydroxy-1,8-cineole β -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside (54 mg) by repeated CC (1. SiO₂; 30 g, CHCl₃/MeOH/H₂O, 6:1:0.1; 2. ODS-A gel; MeOH/H₂O 23%). Fr. 4.2.4 (684 mg) furnished pumilaside A (25 mg) on purification by CC (1. Sephadex LH-20; MeOH; 2. ODS-A gel; MeOH/H₂O 35%). Fr. 4.2.6 (192 mg) was subjected to CC (1. SiO₂, 30 g; CHCl₃/MeOH/H₂O 4:1:0.1; 2. Sephadex LH-20; MeOH): Frs. 4.2.6.1-4.2.6.3. Compounds 1 (6 mg) and 2 (11 mg) were obtained from Fr. 4.2.6.2 (92 mg) by CC (ODS-A gel; MeOH/H₂O 50%) and then HPLC (Waters-515-HPLC pump, Waters-2487 detector, 201 nm, column: Kromasil100-5-C18, 5 µ, i.d. 10 × 250 mm, MeOH/H₂O 55%). Fr. 4.2.6.3 (56 mg) afforded 3 (13 mg) after repeated CC (ODS-A gel; MeOH/H₂O 50%; 2. Sephadex LH-20; MeOH).

Determination of Sugar Components. The acid hydrolysis and detection of sugars were conducted according to the method described in [17]. Briefly, compounds 1-3 (1 mg each) were refluxed in 10% HCl/dioxane 1:1 (2 ml) for 2 h, and the soln. was evaporated under N₂. The residue was dissolved in anh. pyridine (100 µl), 0.1M L-cysteine methyl ester hydrochloride (200 µl) was added, and the mixture was warmed at 60° for 1 h. The trimethylsilylation reagent HMDS – TMCS (hexamethyldisilazane/Me₃SiCl/ pyridine 2:1:10; *Acros Organics*, B-Geel) was added, and warming at 60° was continued for another 30 min. The thiazolidine derivatives were subjected to GC analysis to identify the sugars. Conditions for GC were: cap. column, *DB5-MS* (30 m × 0.25 µm); oven temp. program, 180–300° at 6°/min; injection temp. 350°; carrier gas, He at 1 ml/min. D-Glucose (t_R 12.24 min) was detected from 1–3, L-rhamnose (t_R 10.21 min) was detected from 1 and 2, D-apiose (t_R 9.30 min) was detected from 3. (Identical to authentic materials.)

Carvacrol 2-O-α-L-*Rhamnopyranosyl-*($1 \rightarrow 6$)-β-D-glucopyranoside (=2-*Methyl*-5-(1-*methylethyl*)phenyl 6-O-(6-*Deoxy*-α-L-*mannopyranosyl*)-β-D-glucopyranoside; **1**). White amorphous powder. [a]_D²⁵ = -64 (c = 0.100, MeOH). UV (MeOH): 215 (3.99), 276 (2.98). IR: 3419, 2960, 2927, 1637, 1508, 1384, 1249, 1096. ¹H-NMR (CD₃OD, 400 MHz): 7.03 (d, J = 7.7, H–C(6)); 6.97 (d, J = 1.2, H–C(3)); 6.80 (dd, J = 7.7, 1.2, H–C(5)); 4.80 (d, J = 7.3, H–C(1')); 4.69 (d, J = 1.5, H–C(1'')); 4.03 (dd, J = 10.5, 0.8, H_a–C(6')); 3.84 (dd, J = 3.4, 1.5, H–C(2'')); 3.68 (dd, J = 9.5, 3.4, H–C(3'')); 3.64–3.43 (m, H–C(5''), H_b–C(6'), H–C(5'), H–C(2'), H–C(2'')); 3.41 (dd, J = 10.2, 6.3, H–C(4')); 3.36 (d, J = 9.5, H–C(4'')); 2.84 (*sept.*, J = 6.9, H–C(8)); 2.23 (s, Me–C(1)); 1.23 (d, J = 6.9, 2 Me–C(8)); 1.19 (d, J = 6.2, Me–C(5'')). ¹³C-NMR (CD₃OD, 100 MHz): 157.5 (s, C(2)); 149.4 (s, C(4)); 131.7 (d, C(6)); 126.6 (s, C(1)); 121.5 (d, C(5)); 115.2 (d, C(3'')); 72.3 (d, C(2'')); 71.7 (d, C(4')); 70.0 (d, C(5'')); 75.3 (d, C(2')); 74.4 (d, C(4'')); 72.6 (d, C(3'')); 72.3 (d, C(2'')); 71.7 (d, C(4')); 70.0 (d, C(5'')); 68.1 (t, C(6')); 35.5 (d, C(8)); 24.9 (q, Me(9), Me(10)); 18.2 (q, C(6'')); 16.4 (q, Me(7)). ESI-MS (pos.): 481.3 ([M + Na]⁺). ESI-MS (neg.): 503.7 ([M + COOH]⁻). HR-ESI-MS: 481.2048 ([M + Na]⁺, C₂₂H₃₄NaO₁₆; calc. 481.2050).

5-Methoxycarvacrol 2-O-α-L-Rhamnopyranosyl- $(1 \rightarrow 6)$ -β-D-glucopyranoside (=4-Methoxy-2-methyl-5-(1-methylethyl)phenyl 6-O-(6-Deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside; **2**). White amorphous powder. [*a*]₂₅²⁵ = -69 (*c* = 0.140, MeOH). UV (MeOH): 219 (3.97), 284 (3.48). IR: 3388, 2929, 2871, 1637, 1504, 1384, 1201, 1058. ¹H-NMR (CD₃OD, 400 MHz): 6.99 (*s*, H–C(3)); 6.69 (*s*, H–C(6)); 4.69 (br. *s*, H–C(1'')); 4.65 (*d*, *J* = 6.8, H–C(1')); 4.0 (br. *d*, *J* = 10.7, H_a–C(6')); 3.84 (br. *s*, H–C(2'')); 3.77 (*s*, MeO–C(5)); 3.66 (*dd*, *J* = 9.4, 3.3, H–C(3'')); 3.63 – 3.35 (*m*, H–C(5''), H_b–C(6''), H–C(5''), H–C(2''), H–C(2''), H–C(3''), H–C(4'')); 3.36 (*d*, *J* = 9.5, H–C(4'')); 3.23 (sept., *J* = 7.0, H–C(8)); 2.26 (*s*, Me(7)); 1.20 (d, J = 6.6, Me(6'')); 1.18 (d, J = 7.0, Me(9)); 1.17 (d, J = 7.0, Me(10)). ¹³C-NMR (CD₃OD, 400 MHz): 153.9 (s, C(5)); 151.6 (s, C(2)); 136.5 (s, C(4)); 127.8 (s, C(1)); 116.7 (d, C(3)); 114.5 (d, C(6)); 105.0 (d, C(1')); 102.4 (d, C(1'')); 78.4 (d, C(3')); 77.0 (d, C(5')); 75.3 (d, C(2')); 74.4 (d, C(4'')); 72.6 (d, C(3'')); 72.3 (d, C(2'')); 71.7 (d, C(4')); 70.0 (d, C(5'')); 68.2 (t, C(6')); 56.6 (q, MeO), 28.2 (d, C(8)); 23.6 (q, Me(10)); 23.5 (q, Me(9)); 18.2 (q, C(6'')); 16.7 (q, Me(7)). ESI-MS (pos.): 511.3 ([M + Na]⁺). ESI-MS (neg.): 533.6 ([M + COOH]⁻). HR-ESI-MS: 511.2157 ([M + Na]⁺, C₂₃H₃₆NaO₁₁; calc. 511.2155).

15-Hydroxytorreyol 10-O-(6-O-β-D-apiofuranosyl)-β-D-glucopyranoside (=(1R,4S,4aR,8aS)-1,2,3,4,4a,7,8,8a-Octahydro-6-(hydroxymethyl)-1-methyl-4-(1-methylethyl)naphthalen-1-yl 6-O-[(2R,3R,4R)-Tetrahydro-3,4-dihydroxy-4-(hydroxymethyl)furan-2-yl]-β-D-glucopyranoside; **3**). White amorphous powder. $[\alpha]_{D}^{25} = -5$ (c = 0.160, MeOH). IR: 3421, 2929, 1637, 1459, 1384, 1058. ¹H- and ¹³C-NMR: Table. ESI-MS (pos.): 555.3 ($[M + Na]^+$). ESI-MS (neg.): 578.0 ($[M + COOH]^-$). HR-ESI-MS: 555.2790 ($[M + Na]^+$, C₂₆H₄₄NaO₁₁; calc. 555.2781).

This project was supported by grants from the *National Science and Technology Major Project 'Key New Drug Creation and Manufacturing Program'*, P. R. China (2009ZX09301-001 for Shanghai Institute of Materia Medica and 2009ZX09301-007 for Shanghai Institute of Pharmaceutical Industry).

REFERENCES

- [1] J. Xu, Y.-Q. Guo, X. Li, K. Wei, X.-J. Zhao, J. Ethnopharmacol. 2008, 117, 175.
- [2] S. E. Kim, H. S. Kim, Y. S. Hong, Y. C. Kim, J. J. Lee, J. Nat. Prod. 1999, 62, 697.
- [3] Y. Zhu, Z. Miao, J. Ding, W. Zhao, J. Nat. Prod. 2008, 71, 1005.
- [4] H. Z. Jin, B. Y. Hwang, H. S. Kim, J. H. Lee, Y. H. Kim, J. J. Lee, J. Nat. Prod. 2002, 65, 89.
- [5] B. Y. Hwang, H. S. Kim, J. H. Lee, Y. S. Hong, J. S. Ro, K. S. Lee, J. J. Lee, J. Nat. Prod 2001, 64, 82.
- [6] Y. Guo, X. Li, J. Wang, J. Xu, N. Li, Fitoterapia 2005, 76, 273.
- [7] G. Nonaka, H. Nishimura, I. Nishioka, Chem. Pharm. Bull. 1982, 30, 2061.
- [8] K. Sano, S. Sanada, Y. Ida, J. Shoji, Chem. Pharm. Bull. 1991, 39, 865.
- [9] J. O. Andrianaivoravelona, C. Terreaux, S. Sahpaz, J. Rasolondramanitra, K. Hostettmann, *Phytochemistry* 1999, 52, 1145.
- [10] K. Graikou, N. Aligiannis, I. Chinou, A.-L. Skaltsounis, F. Tillequin, M. Litaudon, *Helv. Chim. Acta* 2005, 88, 2654.
- [11] T. Isikawa, J. Kitajima, Y. Tanaka, M. Ono, Y. Ito, T. Nohara, Chem. Pharm. Bull. 1998, 46, 1738.
- [12] J. Kitajima, N. Suzuki, T. Isikawa, Y. Tanaka, Chem. Pharm. Bull. 1998, 46, 1583.
- [13] J. Kitajima, K. Kimizuka, Y. Tanaka, Chem. Pharm. Bull. 2000, 48, 77.
- [14] K. Shimoda, Y. Kondo, T. Nishida, H. Hamada, N. Nakajima, H. Hamada, *Phytochemistry* 2006, 67, 2256.
- [15] L. Ding, R. Pfoh, S. Rühl, S. Qin, H. Laatsch, J. Nat. Prod. 2009, 72, 99.
- [16] A.-K. Borg-Karlson, T. Norin, A. Talvitie, Tetrahedron 1981, 37, 425.
- [17] A. Ito, H.-B. Chai, L. B. S. Kardono, F. M. Setowati, J. J. Afriastini, S. Riswan, N. R. Farnsworth, G. A. Cordell, J. M. Pezzuto, S. M. Swanson, A. D. Kinghorn, J. Nat. Prod. 2004, 67, 201.

Received November 30, 2009